Skip to Main Content
Book Chapter

Application of a Statics Solution, Wyoming Overthrust

By
J.H. Johnson
J.H. Johnson
Conoco
Search for other works by this author on:
M.S. Yancey
M.S. Yancey
Conoco
Search for other works by this author on:
P.S. D‘Onfro
P.S. D‘Onfro
Conoco
Search for other works by this author on:
Published:
January 01, 1983

Abstract

Lateral changes in seismic velocity are common in structurally complex areas. Because these changes can create false structures on seismic time sections, one must interpret with extreme care. Where a lateral change in velocity occurs near the surface, it may cause a "statics" problem. An idealized example of this is illustrated in Figure 1. Areal data example of this problem is shown in Figure 2; a seismic section from the Wyoming Overthrust belt. The dip reversal marked at 1 sec at the east end of Figure 3 (an interpreted version of Figure 2), looks like an excellent structure to drill, however a detailed study of this line eliminated this prospect.

In Figure 3, the long thin white line indicates a fault that can be seen in outcrop (Fault A). Two prominent reflectors are highlighted by thick gray lines. A clue that something is wrong with the section is the signal deterioration or "data bust" slightly east of center. The vertical alignment of this data bust and the fact that the reflectors are offset by 400 msec across the bust, suggest that there is either a statics problem or a vertical fault. A good interpreter should suspect a static problem. Displaying two stacked sections, one made from near offset traces and the other made from far offset traces, verified that there was a statics problem and helped to solve it.

This particular statics problem is caused by the abrupt velocity change from the low-velocity fill west of the fault to high-velocity rocks immediately east of the fault. The low-velocity fill is shaded in gray in Figure 3. Reflections that travel through the low-velocity fill will be delayed relative to those that travel through the high-velocity rocks. A "velocity sag" results below the fill, that is, reflectors below the fill appear on a seismic section to be deeper than those below the high-velocity rocks. The data bust results from the CDP stacking process. Half of the traces that will be summed to form the stacked trace resemble the stacked traces east of the data bust and the other half resembles the delayed traces west of the bust. When the halves are summed in the stacking process the result is a loss of reflection continuity.

You do not currently have access to this article.

Figures & Tables

Contents

AAPG Studies in Geology

Seismic Expression of Structural Styles: A Picture and Work Atlas. Volume 1–The Layered Earth, Volume 2–Tectonics Of Extensional Provinces, & Volume 3–Tectonics Of Compressional Provinces

A. W. Bally
A. W. Bally
Search for other works by this author on:
American Association of Petroleum Geologists
Volume
15
ISBN electronic:
9781629810188
Publication date:
January 01, 1983

GeoRef

References

Related

Citing Books via

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal