Skip to Main Content

Abstract

Temperature-time–based first-order kinetic models are currently used to predict hydrocarbon generation and maturation in basin modeling. Physical chemical theory, however, indicates that water pressure should exert significant control on the extent of these hydrocarbon generation and maturation reactions. We previously heated type II Kimmeridge Clay source rock in the range of 310 to 350°C at a water pressure of 500 bar to show that pressure retarded hydrocarbon generation. This study extended a previous study on hydrocarbon generation from the Kimmeridge Clay that investigated the effects of temperature in the range of 350 to 420°C at water pressures as much as 500 bar and for periods of 6, 12, and 24 hr. Although hydrocarbon generation reactions at temperatures of 420°C are controlled mostly by the high temperature, pressure is found to have a significant effect on the phase and the amounts of hydrocarbons generated.

In addition to hydrocarbon yields, this study also includes the effect of temperature, time, and pressure on maturation. Water pressure of 390 bar or higher retards the vitrinite reflectance by an average of ca. 0.3% Ro compared with the values obtained under low pressure hydrous conditions across the temperature range investigated. Temperature, pressure, and time all control the vitrinite reflectance. Therefore, models to predict hydrocarbon generation and maturation in geological basins must include pressure in the kinetic models used to predict the extent of these reactions.

You do not currently have access to this chapter.

Figures & Tables

Contents

GeoRef

References

Related

Citing Books via

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal