Skip to Main Content
Book Chapter

Cenozoic Formation of the Central Andes: A Geophysical Perspective

By
David E. James
David E. James
Department of Terrestrial Magnetism, Carnegie Institution of Washington
,
5241 Broad Branch Road, N. W.
,
Washington
, D.C. 20015
Search for other works by this author on:
I. Selwyn Sacks
I. Selwyn Sacks
Department of Terrestrial Magnetism, Carnegie Institution of Washington
,
5241 Broad Branch Road, N. W.
,
Washington
, D.C. 20015
Search for other works by this author on:
Published:
January 01, 1999

Abstract

Geophysical data relating the dynamic processes of plate motion and subduction to Andean orogenesis are interpreted in terms of a new model for magmatic and tectonic development of the central Andes. The model is based on changing subduction geometry—from normal to flat to normal—and the attendant magmatic and tectonic effects of slab dewatering, continental lithospheric hydration, and asthenospheric flow during closing and opening of the subduction zone mantle wedge. The model includes five stages:

1. Normal subduction extended into Eocene time.

2. A slab transition from normal to flat subduction occurred in late Eocene-early Oligocene time, coincident with extensive crustal deformation in the eastern Altiplano and Eastern Cordillera.

3. Flat subduction during much of Oligocene time was accompanied by a volcanic null throughout the central Andes, when water from the slab infiltrated and hydrated the overlying continental lithosphere, resulting in advective cooling and abnormally low heat flow values. Lithospheric hydration was concentrated not only in the usual fore-arc region but also within the inner arc, in the zone of resubduction where amphibole is presumed to break down and the slab dips steeply into the mantle.

4. The transition from flat to normal subduction in late Oligocene-earliest Miocene time brought about an influx of asthenospheric material from depth into the growing mantle wedge above the slab. Hot asthenospheric mantle in contact with hydrated lithosphere of the inner arc produced widespread melting of both mantle and crust beneath the eastern Altiplano-Eastern Cordillera and ushered in a period of ductile deformation associated with oroclinal formation. The magmatic activity and orogenic uplift that began in the inner arc broadened westward as hot asthenospheric material flowed into the mantle wedge above the sinking slab.

5. The westward broadening of volcanic activity culminated in a resumption of calc-alkaline volcanism all along the main volcanic arc by at least 20 to 15 Ma. The crust beneath the main arc, probably thickened by previous magmatic and deformational events, was further thickened and uplifted by the intrusion or underplating of massive volumes of mantle-derived magmas. Eruptive activity in the inner arc, much of it anatectic and correlated with periods of crustal deformation, gradually waned, with migration of minor magmatic centers eastward almost to the present day. The thermally thinned and weakened lithosphere of the Eastern Cordillera and sub-Andean belt formed a ductile block in which compressive stresses have been concentrated in Neogene time. The tectonic collapse of the inner arc is correlated with the Neogene formation of the Bolivian orocline. By contrast, the Western Cordillera and the western Altiplano, underlain by the Arequipa-Antofalla cratonic block, underwent relatively minor deformation.

You do not currently have access to this article.

Figures & Tables

Contents

Special Publications of the Society of Economic Geologists

Geology and Ore Deposits of the Central Andes

Brian J. Skinner
Brian J. Skinner
Search for other works by this author on:
Society of Economic Geologists
Volume
7
ISBN electronic:
9781629490311
Publication date:
January 01, 1999

GeoRef

References

Related

Citing Books via

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal