Skip to Main Content
Book Chapter

Komatiite-Associated Ni-Cu-(PGE) Deposits, Abitibi Greenstone Belt, Superior Province, Canada

By
M. G. Houlé
M. G. Houlé
Geological Survey of Canada, 490 rue de la Couronne, Québec, Québec G1K 9A9, Canada
Search for other works by this author on:
C. M. Lesher
C. M. Lesher
Mineral Exploration Research Centre, Department of Earth Sciences, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada
Search for other works by this author on:
Published:
January 01, 2011

Abstract

The Abitibi greenstone belt is part of the Abitibi-Wawa terrane, one of the world's largest, best-exposed, and most richly mineralized Archean greenstone belts, containing world-class orogenic lode Au deposits (e.g., Timmins, Kirkland Lake, Val d'Or), world-class Cu-Zn VMS deposits (e.g., Kidd Creek, Noranda, La Ronde Bousquet), and significant Ni-Cu-(PGE) mineralization (e.g., Dumont, Shebandowan). It is one of the places where skeletal olivine "chicken-track" (now known as spinifex) texture was first described, and where the first Ni-Cu-(PGE) deposits (Alexo, Shebandowan) associated with what are now known to be komatiites were discovered. The Abitibi greenstone belt has a long history of exploration and mining of Ni-Cu-(PGE), with several periods of extensive exploration and discovery, including a major renewal in the past decade.

Komatiites occur sporadically throughout the Superior province of the Canadian Shield, but appear to be most abundant in the ~2.7 Ga Abitibi greenstone belt, which contains the classic exposures at Alexo (Dundonald township), Pyke Hill (Munro township), and Spinifex Ridge (La Motte township). Komatiites typically represent only 2 to 10 percent of the volcanic rocks in the Abitibi greenstone belt, and have been identified thus far within three end-member lithostratigraphic associations: (1) bimodal komatiite-komatiitic basalt sequences, (2) bimodal komatiite-basalt sequences, and (3) bimodal komatiite-rhyolite-dacite-andesite sequences. High-precision U-Pb TIMS zircon geochronology indicates that komatiites occur mainly within four major volcanic episodes (2760–2735, 2723–2720, 2720–2710, and 2710–2704 Ma), but the two youngest host almost the entire Ni-Cu-(PGE) endowment of the belt.

Although the komatiite-associated Ni-Cu-(PGE) mineralization in the Cape Smith belt in New Quebec, Thompson nickel belt in Manitoba, Wiluna-Norseman belt in Western Australia, and the Zimbabwe craton appears to occur at fairly specific stratigraphic levels, mineralization in the Abitibi greenstone belt occurs at multiple levels of single komatiitic volcanic-subvolcanic edifices. Although most of the komatiites in the Abitibi greenstone belt have been previously considered to be extrusive, increasing numbers of units have been shown to be intrusive and it now appears that komatiite-associated Ni-Cu-(PGE) mineralization occurs within a spectrum of environments ranging from intrusive (e.g., Dumont, Sothman) through subvolcanic (e.g., Dundonald South, McWatters) to extrusive (e.g., Alexo, Hart, Langmuir, Redstone). Komatiite-associated Ni-Cu-(PGE) deposits in the Abitibi greenstone belt, regardless of volcanic setting, are similar to other deposits of this type in that most contain type I basal stratiform, type II internal disseminated, and less common type IV sedimenthosted mineralization; most are hosted by relatively undifferentiated olivine mesocumulate cumulate units that normally have very distinctive geophysical-geochemical signatures and that have been interpreted as lava channels, subvolcanic sills, or feeder dikes; most are associated with S-rich country rocks; most are localized in foot-wall embayments; and most exhibit evidence of magma-wall rock interaction (e.g., xenoliths, geochemical contamination) during emplacement, consistent with them having formed in dynamic systems. However, the deposits in the Abitibi greenstone belt differ from other deposits of this type in commonly occurring at multiple stratigraphic levels, and several occur within highly differentiated komatiitic units (Dumont, Dundeal) and one (Bannockburn C zone) is hosted by heterolithic breccias.

Geochemical studies indicate that regardless of age or petrogenetic affinity (Al undepleted vs. Al depleted vs. Ti enriched vs. Fe rich), almost all of the parental magmas were undersaturated in sulfide prior to emplacement and therefore represent favorable magma sources for Ni-Cu-(PGE) mineralization. Volcanological studies indicate that the physical volcanology—in particular, the degree of lava-magma channelization—one of the most critical factors in ore genesis. The smaller sizes of the deposits in the Abitibi greenstone belt compared to Western Australia, Thompson, or Raglan is attributed to a more juvenile tectonic setting and lower density of continental crust. The more complex volcanic-subvolcanic architecture within the Abitibi reflects the variability of the near-surface rocks within each volcanic episode and makes it more difficult to predict the location of mineralized lava channels and channelized sheet flows and sills within different komatiitic-bearing successions. However, targeting Ni-Cu-(PGE) mineralization within those environments still relies on identifying areas of high magmatic flux within deformed and metamorphosed greenstone belts, requiring an under-standing of the physical volcanology of magma-lava pathways and their geophysical-geochemical signatures. One of the most important implications, however, is that contrary to previous interpretations, Ni-Cu-(PGE) mineralization is not restricted to specific stratigraphic contacts, but may occur in any environment throughout the stratigraphy where lava pathways have had access to external S. Increased understanding of the volcanology and stratigraphy of komatiites coupled with recent discoveries (e.g., Bannockburn C zone, Langmuir W4) highlight the potential of finding new Ni-Cu-(PGE) deposits associated with komatiites in both less-explored and also more-explored camps within the Abitibi-Wawa terrane. Furthermore, the recognition of similar subvolcanic-volcanic architectures within other komatiite-bearing greenstone belts of the Canadian Shield points to the need to assess their economic potential in the light of this new knowledge gained about the komatiites in the Abitibi greenstone belt.

You do not currently have access to this article.
Don't already have an account? Register

Figures & Tables

Contents

Reviews in Economic Geology

Magmatic Ni-Cu and PGE Deposits: Geology, Geochemistry, and Genesis

Chusi Li
Chusi Li
Indiana University
Search for other works by this author on:
Edward M. Ripley
Edward M. Ripley
Indiana University
Search for other works by this author on:
Society of Economic Geologists
Volume
17
ISBN electronic:
9781629490243
Publication date:
January 01, 2011

GeoRef

References

Related

A comprehensive resource of eBooks for researchers in the Earth Sciences

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal