Skip to Main Content
Book Chapter

Structural Controls on High-Grade Iron Ores Hosted by Banded Iron Formation: A Global Perspective

By
Hilke J. Dalstra
Hilke J. Dalstra
Rio Tinto Exploration Pty., Ltd., 37 Belmont Avenue, Belmont, Western Australia 6104, Australia
Search for other works by this author on:
Carlos A. Rosière
Carlos A. Rosière
Instituto de Geociências, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31130-901, Brazil
Search for other works by this author on:
Published:
January 01, 2008

Abstract

Iron enrichment in banded iron formation (BIF)-hosted high-grade iron deposits is the final result of sequential removal or replacement of gangue minerals from the host by hydrothermal and supergene processes. Apart from the presence of the host BIF, structure is the most important control on the location of these deposits. Also, the distinct structural setup of the mineralizing environment results in iron ore of distinct textural features and consequently variable physical properties.

In the Hamersley province of Western Australia pre-Upper Wyloo Group extensional faults are most often associated with high-grade hematite deposits in the Paleoproterozoic Brockman Iron Formation. The most important faults provide a fluid pathway between underlying dolomites of the Wittenoom Formation, through a sequence of shales and cherts, and into the overlying BIF. Iron ore in the Kaapvaal province of South Africa is hosted within BIFs of similar age to the Pilbara craton. The BIFs in the Kaapvaal province rest directly on dolomite, and Paleoproterozoic karst structures form the main spatial control on the high-grade iron ore. In contrast, low-angle thrust faults are the principal structural control on large deposits in the Marra Mamba BIF in the Hamersley province. These structures provided a more effective fluid pathway between the BIF and the overlying dolomites. A very similar structural scenario controls the very large Paleoproterozoic iron deposits in the Quadrilátero Ferrífero province in Brazil, although individual deposits are often highly complex due to postmineralization deformation during the Brasiliano orogeny. Structural reconstruction suggests that early structures, particularly thrust faults and tight folds that link a potential fluid source such as the dolomites of the Gandarela Formation with the underlying BIFs, form the most important control on ore formation in this province.

Iron deposits hosted by Archean BIFs are less well understood. In the Carajás province of Brazil, fluids derived from granitoid intrusions are interpreted to have caused the initial hypogene alteration of the BIF which later focused the supergene ore fluids that led to high-grade hematite formation. Major structures that linked these granitoids with the BIF were crucial in the formation of the protores.

In all these districts, mineralizing structures are those that provided the most effective link between a source of hydrothermal, silica-undersaturated fluids and iron formation, or allowed the influx of surface-derived meteoric waters to control the sites of ore formation in the BIF. Another important effect of structures is that they locally caused a differential pressure gradient during deformation and concentrated fluids into low-strain or dilational sites of iron ore formation.

Most high-grade iron deposits formed close to (paleo)-unconformity surfaces and are, therefore, prone to rapid erosion. The structural setting can play a major role in preservation of these deposits. Ore deposits near normal faults in extensional grabens and karst structures are particularly favorable to ore preservation because the faults usually caused downthrow of the mineralized zones and burial by younger sediments. Compressional structures such as thrusts were far less favorable, because they usually caused uplift and erosion of the orebodies within them. Orebodies controlled by these structures require postmineralization preservation events, such as a major postore orogeny, or formed relatively recently, and therefore erosion did not progress far enough to erode them.

You do not currently have access to this article.

Figures & Tables

Contents

Reviews in Economic Geology

Banded Iron Formation-Related High-Grade Iron Ore

Steffen Hagemann
Steffen Hagemann
Centre for Exploration Targeting, School of Earth and Geographical Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
Search for other works by this author on:
Carlos Alberto Rosière
Carlos Alberto Rosière
Centro de Pesquisas Prof. Manoel Teixeira da Costa, Instituto de Geociências, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Campus Pampulha, Belo Horizonte, MG 31270.90, Brazil
Search for other works by this author on:
Jens Gutzmer
Jens Gutzmer
Paleoproterozoic Mineralization Research Group, University of Johannesburg, PO Box 524, Auckland Park 2006, South Africa
Search for other works by this author on:
Nicolas J. Beukes
Nicolas J. Beukes
Paleoproterozoic Mineralization Research Group, University of Johannesburg, PO Box 524, Auckland Park 2006, South Africa
Search for other works by this author on:
Society of Economic Geologists
Volume
15
ISBN electronic:
9781629490229
Publication date:
January 01, 2008

GeoRef

References

Related

Citing Books via

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal