Skip to Main Content
Skip Nav Destination


Magmatic sulfide ores are thought to form as the result of droplets of an immiscible sulfide-oxide liquid forming within silicate magma and then becoming concentrated in a particular location. Certain elements, notably the Group VIII transition metals Fe, Co, Ni, Pd, Pt, Rh, Ru, Ir and Os together with Cu and Au, partition strongly into the sulfide- oxide liquid, and thus become concentrated with it. A number of factors may influence the concentration of this liquid, but the dominant one is gravitational settling, since the liquid has a density of >4 in comparison with a value of <3 for its host silicate magma.

To help in the understanding of deposits of this type, in this book we first discuss the phase relations of simple sul- fide-oxide liquids and activity-composition relations within them. We then discuss the solubility of sulfide in mafic and ultramafic melts, followed by the partitioning of elements between silicate magma and sulfide-oxide liquid. The oxidation state and volatile content of a silicate magma can have a major influence on the segregation of a sulfide-oxide liquid and the distribution of metals so that this forms the focus of a second chapter.

Magmatic sulfide deposits can be viewed in terms of their associated mafic or ultramafic bodies and the tectonic settings into which these were emplaced. The scheme shown as Table 1. 1 is adapted from that of Naldrett, (1989). In it, bodies are divided into whether they were emplaced in a rifted continental environment (category II), a

You do not currently have access to this chapter.

Figures & Tables





Citing Books via

Close Modal

or Create an Account

Close Modal
Close Modal