Skip to Main Content
Book Chapter

A View through an Epithermal-Mesothermal Precious Metal System in the Northern Black Hills, South Dakota: A Magmatic Origin for the Ore-Forming Fluids

By
Colin J. Paterson
Colin J. Paterson
Department of Geology and Geological Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701
Search for other works by this author on:
Nuri Uzunlar
Nuri Uzunlar
Department of Geology and Geological Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701
Search for other works by this author on:
J. Groff
J. Groff
Department of Geology and Geological Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701
Search for other works by this author on:
F. J. Longstaffe
F. J. Longstaffe
Department of Geology, University of Western Ontario, London, Ontario, Canada N6A 5B7
Search for other works by this author on:
Published:
January 01, 1989

Abstract

In the northern Black Hills, epithermal to mesothermal Au-Ag-(Pb)-(W) deposits of the sediment-hosted type and the intrusion-hosted type are spatially and temporally associated with an east-west zone of Tertiary (40-60 Ma) alkalic igneous intrusions. Considerable structural relief, together with underground exposure in the Homestake mine, provides a 3-km vertical profile through the Tertiary hydrothermal system.

Gold-silver mineralization occurs throughout the system from thick quartz-pyrite ± galena ± chalcopyrite ± sphalerite ± fluorite ± anhydrite ± biotite ± molybdenite ± cosalite veins in Precambrian schist at depth, to quartz-pyrite-fluorite veinlets and disseminated pyrite in igneous stocks, to silicified arsenian pyrite-marcasite replacement mantos adjacent to vertical fractures in lower Paleozoic sedimentary rocks (calcareous and dolomitic sandstones, limestones) nearer the surface. Stratigraphic reconstruction allows estimation of the range of maximum depths of mineralization from 1.3 to 4 km (0.35-1.1 kbars).

Fluid inclusions in quartz and fluorite in these deposits are diverse. Most fluids have low apparent salinity (<10 equiv wt % NaCl), but saline fluids (up to 63 wt %) and CO2-rich fluids occur deeper in the composite system. Fluid inclusion trapping temperatures range from 400° to 750°C deep in the system to 170° to 240°C at higher levels.

The δ18O and δD values for the fluids are 6.2 to 11.6 and —53 to —75 per mil, respectively. The isotopic and fluid inclusion data together suggest that magmatic water was an important component of the ore-forming fluids. This is in contrast with most epithermal systems which are dominated by meteoric water. The implication is that the alkalic igneous intrusions were the source for most of the gold. The presence of lower δ18O values at shallower levels (about 1-km depth), the abrupt decrease in trapping temperatures, and the gradation in fluid salinities suggest that meteoric waters in the aquifers of the basal Paleozoic sequence may have mixed with the ore fluids. This fluid mixing was a likely cause of gold deposition.

You do not currently have access to this article.

Figures & Tables

Contents

Economic Geology Monograph Series

The Geology of Gold Deposits: The Perspective in 1988

Reid R. Keays
Reid R. Keays
Search for other works by this author on:
W. R. H. Ramsay
W. R. H. Ramsay
Search for other works by this author on:
David I. Groves
David I. Groves
Search for other works by this author on:
Society of Economic Geologists
ISBN electronic:
9781629490014
Publication date:
January 01, 1989

GeoRef

References

Related

Citing Books via

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal