Skip to Main Content
Book Chapter

An Epigenetic Origin for the Telfer Gold Deposit, Western Australia

By
Nicola M. Goellnicht
Nicola M. Goellnicht
Key Centre for Strategic Mineral Deposits, Department of Geology, University of Western Australia, Nedlands, Western Australia 6009, Australia
Search for other works by this author on:
David I. Groves
David I. Groves
Key Centre for Strategic Mineral Deposits, Department of Geology, University of Western Australia, Nedlands, Western Australia 6009, Australia
Search for other works by this author on:
Neal J. Mcnaughton
Neal J. Mcnaughton
Key Centre for Strategic Mineral Deposits, Department of Geology, University of Western Australia, Nedlands, Western Australia 6009, Australia
Search for other works by this author on:
Gorol Dimo
Gorol Dimo
Telfer Project, Newmont Australia Ltd., Telfer, Western Australia 6762, Australia
Search for other works by this author on:
Published:
January 01, 1989

Abstract

Middle to upper Proterozoic marine sedimentary successions of the Paterson province host gold-copper mineralization in quartz sulfide reefs at Telfer, the largest single producing gold mine in Australia during 1987. The origin of Telfer is controversial: most previous models have emphasized the very continuous, stratiform-strata-bound nature of the auriferous Middle Vale reef and postulated a syngenetic exhalative origin. However, recent deeper mining and drilling of hypogene ore provides evidence that Telfer is an epigenetic deposit.

Reconnaissance data suggest that northwest-trending elongate domes in the Paterson province (including the Main and West domes which host the Telfer gold deposits) formed during a noncoaxial deformation event. Veins associated with mineralization form probable conjugate sets, possibly controlled by later coaxial deformation. Widespread bedding-plane slip and dilation was synchronous with vein formation, resulting in the preferential development of laterally extensive concordant veins and mineralized reefs within less competent siltstone units, either during or after the late stages of doming.

The Middle Vale reef hosts most of the gold mineralization, and the highest grade ore is spatially coincident with zones of highest vein density in both its footwall and hanging wall. Economic gold mineralization higher in the stratigraphy is in strata-bound horizons and vein stockworks, hosted by pervasively altered sandstones and siltstones. Field observations suggest that at least part of the Middle Vale reef consists of subconcordant quartz sulfide veins. Textural studies suggest that most of the sulfides within the reef are epigenetic and replace carbonate horizons and calcareous mudstones and siltstones, which locally contain carbonaceous material. Rounded aggregates of fine-grained, well-crystallized pyrite within a thin laminated interval at the top of the reef have anomalous geochemistry and provide the only evidence for probable syngenetic pyrite within the mine sequence.

A number of granitoids intruded the middle to upper Proterozoic succession late in its tectono-magmatic history. A Pb-Pb mineral isochron for one of these, the Mount Crofton Granite, gives an age of 690 ± 48 Ma. The Pb isotope compositions of ore-associated sulfides in discordant veins and the Middle Vale reef at Telfer, and skarns at two other prospects, are heterogeneous and dissimilar to that shown by most volcanogenic sulfide ores. The Pb isotope sulfide data are best explained by derivation of most of the Pb from the host rock (or basinal brines), with some contribution from a magmatic source such as the Mount Crofton Granite.

Fluid inclusions from quartz in veins and the Middle Vale reef contain very complex saline and CO2-rich fluids that homogenize between 225° and 440°C: salinities range between 21 and 54 equiv wt percent NaCl. Daughter minerals include halite, Fe-bearing calcite, sylvite (?), and dawsonite. Fluid inclusion data are indicative of mixing of hot, very high salinity (magmatic) fluids with cooler, lower salinity (basinal or meteoric) waters with liberation of CC2 during replacement of carbonate host rocks.

Telfer is reinterpreted to be an epigenetic vein-hosted replacement deposit in which gold mineralization was controlled by both structure and composition of the host rocks. Hot, saline fluids introduced Cu and Au during late deformation and granitoid emplacement, but the source of the Au is not yet established.

You do not currently have access to this article.

Figures & Tables

Contents

Economic Geology Monograph Series

The Geology of Gold Deposits: The Perspective in 1988

Reid R. Keays
Reid R. Keays
Search for other works by this author on:
W. R. H. Ramsay
W. R. H. Ramsay
Search for other works by this author on:
David I. Groves
David I. Groves
Search for other works by this author on:
Society of Economic Geologists
ISBN electronic:
9781629490014
Publication date:
January 01, 1989

GeoRef

References

Related

Citing Books via

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal