Skip to Main Content


The climate system is complex. Consequently every approach to the climate system involves simplification, whether the goal is to predict future climate change or to relate climate to the formation and distribution of economic sedimentary deposits. One of the most natural forms of simplification is through modern analogies. Qualitative or conceptual models based on modern analogies are many times informative, but the limitation is clear. Such analogies rarely grasp the potential for changes on a dynamic earth. If we are to understand climatic change, and its potential for influencing the distribution and character of sediments, then the next step is investigations based on physical laws. These laws (e.g. first law of thermodynamics) are not complex, but the processes that they govern force the development of mathematical models. The primary task of climate modeling is to replace the complex natural system by a hierarchy of simplified ones which include all the processes and feedback mechanisms which are necessary to predict climatic change, achieving a quantitative tool for insight into the climate system.

The simplification of the climate system in mathematical models may take many forms. For example, many processes which in theory can be computed from general physical laws can often be parameterized (i.e. approximated). For instance, models must either ignore or parameterize factors which operate on a scale smaller than the model resolution, such as approximating small eddies or molecular processes by a simple diffusion law. In other cases observational data may be used to derive an empirical relationship which

Figures & Tables





Citing Books via

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal