Skip to Main Content
Book Chapter

Abstract

Published:
January 01, 1994

Abstract

Foreland-basin stratigraphy and orogen state are determined by the rate of mass accretion to an orogen by thrust tectonics, the efficiency of mass redistribution by surface processes, and lithospheric flexure. Orogen state can be characterized as constructive, steady, or destructive depending on the mass net balance in the orogen (Jamieson and Beaumont, 1988, Tectonics, v. 7, pp. 417-445). We have constructed a kinematic planform foreland-basin model to look for stratigraphic relationships between synthetic foreland basin stratigraphy and orogen state.

The foreland-basin model links thin-skinned tectonic development of an orogen, lithospheric flexure (Beaumont and others, 1988, Tectonics, v. 7, p. 389-416) and mass redistribution by surface processes (Beaumont and others, 1992, Thrust Tectonics, p. 1-18). The tectonic model uses critical wedge principles to construct a two-sided wedge-shaped orogen. Sediments are accreted to the toe of each wedge at a rate proportional to the convergence rate of each leading slip line with the adjacent autochthon. The wedges, which need not be symmetric, grow in proportion to the net rate of mass influx. Their geometry is consistent with flexural adjustment of the lithosphere, conservation of mass, the criticality of each Coulomb wedge and match of wedge heights at their interface. The lithospheric-flexure model includes elastic or thermally activated linear viscoelastic rheologies. The surface process model couples climatic, hillslope (mass diffusion) and fluvial (mass transport) processes to erode, redistribute, and deposit mass across the orogen, its foreland basin and peripheral bulge.

Synthetic stratigraphic assemblages are constructed for a range of tectonic, lithospheric, and surface process model parameters, to determine under what circumstances an assemblage can be considered diagnostic of an orogens's state, or change in state.

You do not currently have access to this article.

Figures & Tables

Contents

SEPM Concepts in Sedimentology and Paleontology

Tectonic and Eustatic Controls on Sedimentary Cycles

John M. Dennison
John M. Dennison
University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
Search for other works by this author on:
Frank R. Ettensohn
Frank R. Ettensohn
University of Kentucky, Lexington, Kentucky
Search for other works by this author on:
SEPM Society for Sedimentary Geology
Volume
4
ISBN electronic:
9781565762275
Publication date:
January 01, 1994

GeoRef

References

Related

Citing Books via

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal