Skip to Main Content
Book Chapter

Cycles in Lake Beds of the triassic Sanford Sub-Basin of North Carolina

By
Lisa N. Hu
Lisa N. Hu
Geology Department, The University of North Carolina, Chapel Hill, North Carolina 27599
Search for other works by this author on:
Daniel A. Textoris
Daniel A. Textoris
Geology Department, The University of North Carolina, Chapel Hill, North Carolina 27599
Search for other works by this author on:
Published:
January 01, 1994

Abstract

Five wells were examined for evidence of cycles in the Middle Carnian Cumnock Formation. Strata in three wells, located in the lake depocenter, show strong periodicities which may be related to astronomical climate forcing as indicated by time series analyses using a modified Cooley-Tukey Fast Fourier Transform of gamma-ray logs from the three wells. The Butler well has strong signals at thicknesses of 4.2, 19.4, and 62 m. The Groce well has strong signals at 6.0, 25.6, and 61.5 m. The Hall well shows strong signals at 6.3 and 51 m. The thicknesses and ratios between them correspond to Van Houten cycles in outcrops of other Newark Supergroup strata. Periodicities may represent present-day 21,700-, 109,000-, and 412,000-year astronomical cycles.

Lithofacies sequences and petrology suggest expansion and contraction of the lake, and possibly correlate with the present-day 21,700- and 109,000-year cycles shown in the power spectra. If the 4.2-, 6.0-, and 6.3-m thicknesses represent the present-day 21, 700-year precession cycle, the sedimentation rates of strata in the three wells range from 0.19 to 0.29 mm of rock/yr, west to east. The life span of the lake was at least 1.2 million years. Renewed tectonic activity along the Jonesboro fault system to the east caused an increase in sedimentation rates in that part of the basin, masked lake cycles, and eventually eliminated the Cumnock lake.

Two other wells, located in the basin perimeter, do not display obvious cycles. The Dummit Palmer well, to the northwest, did not penetrate the entire Cumnock Formation and is affected by a diabase intrusive, faults, several coal beds and related basin-edge complications. The Gregson well, to the southeast, contains only minor lake-margin strata, and they were not amenable to any of our cycle analyses.

You do not currently have access to this article.

Figures & Tables

Contents

SEPM Concepts in Sedimentology and Paleontology

Tectonic and Eustatic Controls on Sedimentary Cycles

John M. Dennison
John M. Dennison
University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
Search for other works by this author on:
Frank R. Ettensohn
Frank R. Ettensohn
University of Kentucky, Lexington, Kentucky
Search for other works by this author on:
SEPM Society for Sedimentary Geology
Volume
4
ISBN electronic:
9781565762275
Publication date:
January 01, 1994

GeoRef

References

Related

Citing Books via

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal