Skip to Main Content
Book Chapter

The Dipmeter

January 01, 1994


The dipmeter tool records microresistivity measurements which are used to determine the dip and strike of resistive features in the subsurface. The modern tool is a four-arm device, in which the arms are arranged radially around a central mandrel and are pressed against the borehole wall by a spring mechanism. Small electrodes are embedded in a rubber pad at the end of each arm to record microresistivities of the formation in the borehole wall. As the tool is pulled upwards, the vertical deviation of the hole causes it to tilt while the cable winding and borehole rugosity make it rotate. A compass and weighted pendulum in the tool housing continuously monitor the geographic orientation of the arms and the deviation of the tool from the vertical.

The raw results of a dipmeter run are four microresistivity traces, together with the azimuth of one of the arms used as a reference and the borehole deviation angle. The fine vertical resolution allows features as thin as one to two centimeters to be resolved. Because lithological changes are relatively minor when traced across the width of the borehole, the overall form of the resistivity traces tends to be similar. Major differences between them is expressed in a relative depth shift between correlative features, which is a function of their strike and dip.

The results of computer processing are most frequently presented as a vector plot which is more commonly known as a "tadpole plot" (see Figure 8). The vertical axis records depth in the same convention as other logs and the horizontal axis is scaled for magnitude of dip. At various depths, "tadpoles" are marked where successful correlations of microresistivity segments were made by computer processing. The quality of the correlation is usually indicated by the symbol used for the tadpole "head". The orientation of the "tail" of the plotted tadpole shows the azimuth of the dip as related to a conventional compass circle.

You do not currently have access to this article.

Figures & Tables


SEPM Short Course Notes

Geological Log Interpretation

John H. Doveton
John H. Doveton
Kansas Geological Survey, University of Kansas
Search for other works by this author on:
SEPM Society for Sedimentary Geology
ISBN electronic:
Publication date:
January 01, 1994




Citing Books via

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal