Skip to Main Content


A principle that is emphasized throughout this book is that the physics of any multicomponent seismic technology cannot be understood unless that technology is viewed in terms of the particle-displacement vectors associated with the various modes of a seismic wavefield. This material therefore begins with a discussion of seismic vector-wavefield behavior to set the stage for subsequent chapters.

Several approaches can be used to explain why each wave mode of nine-component (9C) and three-component (3C) seismic data that propagates through subsurface geology provides a different amount and type of rock/fluid information about the geology that the wave modes illuminate. Some approaches appeal to people who have limited interest in mathematics. Other options need to be structured for people who have an appreciation of the mathematics of wavefield reflectivity. Another argument that can be used focuses on the fundamental differences in P-wave and S-wave radiation patterns and the distinctions in target illuminations associated with 9C and 3C seismic sources. We will consider all of those paths of logic.

A principle that will be stressed is that each mode of a multicomponent seismic wavefield senses a different earth fabric along its propagation path because its particle-displacement vector is oriented in a different direction than are the particle-displacement vectors of its companion modes. Although estimations of earth fabric obtained from various modes of a multicomponent seismic wavefield can differ, each estimate still can be correct because each wave mode deforms a unit volume of rock in a different direction, depending on the orientation of its

You do not currently have access to this chapter.

Figures & Tables





Citing Books via

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal