Debris flows occur frequently in remote areas of Great Smoky Mountains National Park, Tennessee. Rainfall gauges are not adequate for modeling infiltration required for triggering debris flows. Weather radar, providing frequently updated, continuous coverage, is a valuable tool for estimating rainfall intensity, duration, runoff, and infiltration. Daily rainfall from a sole gauge was compared with hourly rainfall from the Digital Precipitation Array weather radar product to model infiltration on August 5, 2012, the day before a debris flow was known to have occurred in the 91-km2 West Prong Little Pigeon River watershed. Additionally, both gauge and radar data were used for rainfall–runoff–infiltration modeling for a 42-day period in July and August 2012. Runoff and infiltration were simulated using the conventional semi-distributed hydrological model HEC-HMS. A local bias correction of radar rainfall at the gauge location improved correlation between the radar rainfall and the gauge data. Peak daily rainfall for the August 5 storm was 93 mm (gauge) and 98 mm (radar), whereas average daily rainfall for the 42-day period was 10 mm and 7.75 mm, respectively. Over the study period, simulated daily infiltration declined from 28 mm to 0.5 mm for the gauge and from 15 mm to 0.14 mm for radar, indicating essentially saturated conditions on the day of the debris flow.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.