ABSTRACT

Regional-scale assessments for debris-flow and debris-flood propagation and avulsion on fans can be challenging. Geomorphological mapping based on aerial or satellite imagery requires substantial field verification effort. Surface evidence of past events may be obfuscated by development or obscured by repeat erosion or debris inundation, and trenching may be required to record the sedimentary architecture and date past events. This paper evaluates a methodology for debris-flow and debris-flood susceptibility mapping at regional scale based on a combination of digital elevation model (DEM) metrics to identify potential debris source zones and flow propagation modeling using the Flow-R code that is calibrated through comparison to mapped alluvial fans. The DEM metrics enable semi-automated identification and preliminary, process-based classification of streams prone to debris flow and debris flood. Flow-R is a susceptibility mapping tool that models potential flow inundation based on a combination of spreading and runout algorithms considering DEM topography and empirical propagation parameters. The methodology is first evaluated at locations where debris-flow and debris-flood hazards have been previously assessed based on field mapping and detailed numerical modeling. It is then applied over a 125,000 km2 area in southern British Columbia, Canada. The motivation for the application of this methodology is that it represents an objective and repeatable approach to susceptibility mapping, which can be integrated in a debris-flow and debris-flood risk prioritization framework at regional scale to support risk management decisions.

You do not currently have access to this article.