This study presents a new methodology to identify landslide and landslide-susceptible locations in Interior Alaska using only geomorphic properties from light detection and ranging (LiDAR) derivatives (i.e., slope, profile curvature, and roughness) and the normalized difference vegetation index (NDVI), focusing on the effect of different resolutions of LiDAR images. We developed a semi-automated object-oriented image classification approach in ArcGIS 10.5 and prepared a landslide inventory from visual observation of hillshade images. The multistage work flow included combining derivatives from 1-, 2.5-, and 5-m-resolution LiDAR, image segmentation, image classification using a support vector machine classifier, and image generalization to clean false positives. We assessed classification accuracy by generating confusion matrix tables. Analysis of the results indicated that LiDAR image scale played an important role in the classification, and the use of NDVI generated better results. Overall, the LiDAR 5-m-resolution image with NDVI generated the best results with a kappa value of 0.55 and an overall accuracy of 83 percent. The LiDAR 1-m-resolution image with NDVI generated the highest producer accuracy of 73 percent in identifying landslide locations. We produced a combined overlay map by summing the individual classified maps that was able to delineate landslide objects better than the individual maps. The combined classified map from 1-, 2.5-, and 5-m-resolution LiDAR with NDVI generated producer accuracies of 60, 80, and 86 percent and user accuracies of 39, 51, and 98 percent for landslide, landslide-susceptible, and stable locations, respectively, with an overall accuracy of 84 percent and a kappa value of 0.58. This semi-automated object-oriented image classification approach demonstrated potential as a viable tool with further refinement and/or in combination with additional data sources.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.