Abstract
Ninety years of historical landslide records were used as input to the Poisson and binomial probability models. Results from these models show that, for precipitation-triggered landslides, approximately 9 percent of the area of Seattle has annual exceedance probabilities of 1 percent or greater. Application of the Poisson model for estimating the future occurrence of individual landslides results in a worst-case scenario map, with a maximum annual exceedance probability of 25 percent on a hillslope near Duwamish Head in West Seattle. Application of the binomial model for estimating the future occurrence of a year with one or more landslides results in a map with a maximum annual exceedance probability of 17 percent (also near Duwamish Head). Slope and geology both play a role in localizing the occurrence of landslides in Seattle. A positive correlation exists between slope and mean exceedance probability, with probability tending to increase as slope increases. Sixty-four percent of all historical landslide locations are within 150 m (500 ft, horizontal distance) of the Esperance Sand/Lawton Clay contact, but within this zone, no positive or negative correlation exists between exceedance probability and distance to the contact.