This article addresses the controls exerted by sedimentologic and diagenetic factors on the preservation and modification of pore-network characteristics (porosity, pore types, sizes, shapes, and distribution) of carbonates belonging to the Bolognano Formation. This formation, exposed at the Majella Mountain, Italy, is composed of Oligocene–Miocene carbonates deposited in middle- to outer-ramp settings. The carbonates consist of (1) grainstones predominantly composed of either larger benthic foraminifera, especially Lepidocyclina, or bryozoans; (2) grainstones to packstones with abundant echinoid plates and spines; and (3) marly wackestones to mudstones with planktonic foraminifera.

The results of this field- and laboratory-based study are consistent with skeletal grain assemblages, grain sizes, sorting, and shapes, all representing the sedimentologic factors responsible for high values of connected primary macroporosity in grainstones deposited on the high-energy, middle to proximal outer ramp. Cementation, responsible for porosity reduction and overall macropore shape and distribution in grainstones to packstones deposited on the intermediate outer ramp, was mainly dependent on the following factors: (1) amount of echinoid plates and spines, (2) grain size, (3) grain sorting and shapes, and (4) clay amount. Differently, in the wackestones to mudstones, laid down on the low-energy, distal outer ramp, matrix is the key sedimentologic factor responsible for low values of scattered macroporosity and dominance of microporosity. The aforementioned results may be useful to improve the prediction of reservoir quality by means of mapping, simulating, and assessing individual carbonate facies with peculiar pore-network characteristics.

You do not currently have access to this article.