Field analogs allow a better characterization of fracture networks to constrain naturally fractured reservoir models. In analogs, the origin, nature, geometry, and other attributes of fracture networks can be determined and can be related to the reservoir through the geodynamic history. In this article, we aim to determine the sedimentary and diagenetic controls on fracture patterns and the genetic correlation of fracture and diagenesis with tectonic and burial history. We targeted two outcrops of Barremian carbonates located on both limbs of the Nerthe anticline (southeastern France). We analyzed fracture patterns and rock facies as well as the tectonic, diagenetic, and burial history of both sites. Fracture patterns are determined from geometric, kinematic, and diagenetic criteria based on field and lab measurements. Fracture sequences are defined based on crosscutting and abutting relationships and compared with geodynamic history and subsidence curves. This analysis shows that fractures are organized in two close-to-perpendicular joint sets (i.e., mode I). Fracture average spacing is 50 cm (20 in.). Fracture size neither depends on fracture orientation nor is controlled by bed thickness. Neither mechanical stratigraphy nor fracture stratigraphy is observed at outcrop scale. Comparing fracture sequences and subsidence curves shows that fractures existed prior to folding and formed during early burial. Consequently, the Nerthe fold induced by the Pyrenean compression did not result in any new fracture initiation on the limbs of this fold. We assume that the studied Urgonian carbonates underwent early diagenesis, which conferred early brittle properties to the host rock.

You do not currently have access to this article.