Abstract

Many authors have proposed that significant volumes of porosity are created by deep-burial dissolution in carbonate reservoirs. We argue, however, that this model is unsupported by empirical data and violates important chemical constraints on mass transport. Because of the ubiquitous presence and rapid kinetics of dissolution of carbonate minerals, the mesogenetic pore waters in sedimentary basins can be expected to be always saturated and buffered by carbonates, providing little opportunity for the preservation of significantly undersaturated water chemistry during upward flow, even if the initial generation of such undersaturated pore water could occur. A review of the literature where this model has been advanced reveals a consistent lack of quantitative treatment. In consequence, the presumption of mesogenetic dissolution producing a net increase in secondary porosity should not be used in the prediction of carbonate reservoir quality.

You do not currently have access to this article.