The Dønna Terrace is part of the morphologically complex continental slope offshore mid-Norway and contains a series of tectonically confined subbasins. These subbasins all have different sizes, shapes, and locations that strongly controlled the development of the deep-marine, Upper Cretaceous Lysing Formation. Careful mapping of the entrance points and internal faults within each subbasin is crucial for constructing a depositional model for these slope turbidite complexes. The key to successful delineation of the turbidite systems and complexes in the study area is a four-step process: (1) understanding the main structural elements on a semiregional scale; (2) mapping all structural features in detail that can impact the sediment fill within and prior to the studied interval to build a structural framework of the area; (3) performing a thorough integration of seismic, biostratigraphy, wire-line, core, and formation-pressure data for each subbasin, identifying the geometry and reservoir architecture of turbidite systems and complexes; and (4) developing a sequence-stratigraphic framework to establish if the deep-marine sedimentary fill of the subbasins is genetically linked. The importance of establishing a genetic linkage between slope basins is related to the reservoir quality of the deep-marine turbidite systems; if a cannibalization of a sandstone-dominated sedimentary fill of an updip slope basin can be demonstrated, lower risk can be assigned for reservoir quality of lower-slope-basin reservoirs. In addition, onlap style and pinch-out character of the turbidite systems yield important information of sand deposition within the turbidite systems.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.