Abstract

Analyses of 471 near-surface soil-gas samples for light hydrocarbons, C1–C4, C2L, C3L, and H2 from the Lost River gas field in Hardy County, West Virginia, reveal sites or clusters of sites containing anomalously high concentrations of light hydrocarbon gases, which occur directly over the faulted, eastern limb of the Whip Cove anticline. Compositional changes in the soil-gases data clearly define major changes in the maturity and locations of potential source beds. Grids placed on botanically defined anomalies confirm a possible correlation between these two independent indicators. Statistical analysis shows that samples from 45 sites contain anomalously large concentrations of light hydrocarbons in the soil-gas constituents. Large concentrations, coupled with high saturate-to-olefin ratios, further confirms that this active seepage is near macroseep levels. Variations in soil-gas compositional trends separate the soil-gas data into two domains, with oilier compositions to the west and gassier compositions to the east. Although the composition of the shallow soil gases above the Lost River gas field are oilier than the reservoir gases, they occur directly over the eastern, faulted limb of the producing anticlinal structure, suggesting that the dry gases from the Oriskany reservoir are probably mixed with oilier gases from organic-rich strata among Devonian shales. The eastern anomalies are much gassier and are very similar to the Oriskany gases produced by the Lost River gas field. The eastern anomalies directly overlie near-vertical beds of Devonian and older age formations that are likely conduits for deeper, mature thermal gases.

You do not currently have access to this article.