Ordovician carbonates near the Wisconsin arch represent the type locality in ancient rocks for the Dorag, or mixing-zone, model for dolomitization. Field, petrographic, and geochemical evidence suggests a genetic link between the pervasive dolomite, trace Mississippi Valley–type (MVT) minerals, and potassium (K)-silicate minerals in these rocks, which preserve a regional hydrothermal signature. Constraints were placed on the conditions of water-rock interaction using fluid-inclusion methods, cathodoluminescence and plane-light petrography, stable isotopic analyses, and organic maturity data. Homogenization temperatures of two-phase aqueous fluid inclusions in dolomite, sphalerite, and quartz range between 65 and 120°C. Freezing data suggest a Na-Ca-Mg-Cl-H2O fluid with salinities between 13 and 28 wt.% NaCl equivalent. The pervasive dolomitization of Paleozoic rocks on and adjacent to the Wisconsin arch was the result of water-rock interaction with dense brines at elevated temperatures, and it was coeval with regional trace MVT mineralization and K-silicate diagenesis. A reevaluation of the Dorag (mixing-zone) model for dolomitization, in conjunction with convincing new petrographic and geochemical evidence, has ruled out the Dorag model as the process responsible for pervasive dolomitization along the Wisconsin arch and adds to the abundant body of literature that casts serious doubt about the viability of the Dorag model in general.

You do not currently have access to this article.