ABSTRACT

Marine rift basins represent a continuum ranging from mixed nonmarine/marine through shallow marine to deep marine, or from partly emergent through partly submergent to completely submergent basin types. These rift basin types have strongly variable synrift sedimentary architectures because of temporal changes in relative sea level, accommodation creation, and sediment supply throughout the rift cycle. Accommodation changes are controlled mainly by local basin-floor rotation, basinwide background subsidence, and, to a lesser degree, by eustatic changes. Sediment supply determines how much of the accommodation is filled and in what manner, and is controlled by the distance to the main hinterland areas, and the size and sedimentyield potential of any local fault-block source area.

Marine siliciclastic synrift successions, whether dominantly shallow or deep marine in nature, are classified in terms of sediment supply as overfilled, balanced, underfilled, and starved. Sediment-overfilled and sediment-balanced infill types are characterized by a threefold sandstone-mudstonesandstone synrift sediment-infill motif; the sediment-underfilled type is represented by a two-fold conglomerate-sandstone-mudstone motif; and the sediment-starved type commonly is represented by a one-fold mudstone motif. The sequential development, linked depositional systems, and stratigraphic signatures of the early synrift, the rift climax, and the late synrift to early postrift stages vary significantly between these rift basin infill types, as do the tectonic significance (timing of initiation and duration) of stratal surfaces, such as footwall unconformities, nondepositional hiatuses, and marine condensed sections. The construction of the fourfold rift basin infill classification scheme provides a first basis and a strong tool for predicting the distribution and geometry of synrift reservoir and source rock types, despite the inherent variability of the marine synrift infills.

First Page Preview

First page PDF preview
You do not currently have access to this article.