Abstract

Overpressure can be produced by the following processes: (1) increase of compressive stress, (2) changes in the volume of the pore fluid or rock matrix, and (3) fluid movement or buoyancy. Loading during burial can generate considerable overpressure due to disequilibrium compaction, particularly during the rapid subsidence of low- permeability sediments. Horizontal stress changes can rapidly generate and dissipate large amounts of overpressure in tectonically active areas. Overpressure mechanisms involving change in volume must be well sealed to be effective. Fluid volume increases associated with aquathermal expansion and clay dehydration are too small to generate significant overpressure unless perfect sealing occurs. Hydrocarbon generation and cracking to gas could possibly produce overpressure, depending upon the kerogen type, abundance of organic matter, temperature history, and rock permeability; however, these processes may be self-limiting in a sealed system because buildup of pressure could inhibit further organic metamorphism. The potential for generating overpressure by hydrocarbon generation and cracking must be regarded as unproven at present. Fluid movement due to a hydraulic head can generate significant overpressure in shallowly buried, "well-plumbed" basins. Calculations indicate that hydrocarbon buoyancy and osmosis can generate only small amounts of localized overpressure. The upward movement of gas in an incompressible fluid also could generate significant overpressure, but requires further investigation. Stress-related mechanisms are the most likely causes of overpressure in many sedimentary basins.

You do not currently have access to this article.