Abstract

The Riwat thrust, with a surface trace of over 50 km, is one of the major faults in the footwall of the main boundary thrust in the Himalayan foreland of Pakistan. Surface geology shows that the Riwat thrust is a foreland-vergent thrust along which lower to middle Siwalik molasse strata are thrust southward over upper Siwalik strata. Seismic reflection interpretation shows that the Riwat thrust developed as a roof thrust of a hinterland-vergent tectonic wedge (triangle zone) underlain by evaporites. The Riwat thrust propagates upsection from a depth of about 4 km at the base of the Siwalik Group. At this depth, it merges into a hinterland-vergent blind thrust that propagates upsection as a ramp from Eocambrian evaporites covering the basement at a depth of about 6 km. Bounded between this set of conjugate faults, a tectonic wedge of Eocambrian (evaporites) to Neogene strata is thrust toward the hinterland to form a triangle zone. The roof thrusts of triangle zones have been widely mapped as backthrusts in deformed mountain fronts. Hinterland motion of tectonic wedges as in the Riwat thrust triangle zone may be a feature of the fold-and-thrust belts underlain by evaporites acting as an extremely weak decollement layer. Their recognition, with a trap-forming geometry below a thrust, is important for interpreting particular fold belts and for hydrocarbon exploration. These structures could be predicted by the surface geology data where hinterland vergence of a fold below a thrust is apparent; however, seismic reflection data appear to be critical in recognizing these structures.

You do not currently have access to this article.