Satellite-based synthetic aperture radar (SAR) can provide an additional remote-sensing tool for regional geologic studies in arctic regions. Although SAR data do not yield direct information on rock type and do not replace traditional optical data, SAR data can provide useful geologic information in arctic regions where the stratigraphic column includes a wide range of lithologies, and bedrock exposures have been reduced to rubble by frost action. For example, in ERS-1 SAR data from the Arctic National Wildlife Refuge (ANWR) of the northeastern Brooks Range, Alaska, carbonate and clastic rocks can give remarkably different radar responses on minimally reprocessed SAR data. The different radar response of different lithologies can be attributed to variations in surface roughness, specifically the size and angularity of scree in talus slopes. Additional postacquisition processing can both remove many of the negative terrain effects common in SAR data and enhance contrasts in bedrock lithology. Because of this ability to discriminate between gross lithologic packages, the ERS-1 SAR data can be used to provide a regional view of ANWR and a detailed look at specific areas. A mosaic of ERS-1 SAR data from all of ANWR provides a synoptic view of the regional structural framework, such as the anticlinoria of northern ANWR and the different allochthonous units of central and southern ANWR. Higher resolution ERS-1 SAR data of the Porcupine Lake area can be used to examine specific structural and stratigraphic problems associated with several major structural boundaries.

You do not currently have access to this article.