ABSTRACT

The South China Sea experienced at least three stages of rifting and two intervening stages of sea-floor spreading since the Early Cretaceous. Its evolution can be described by an episodic model of tectonism, one of thermal cooling and subsidence, pulsed by temporally and spatially confined heating events. Analysis of regional geologic and geophysical data suggests episodes of rifting and associated thermal activities initiated during the Late Cretaceous, the late Eocene, and the late early Miocene. The rift system corresponding to the first episode trends northeast-southwest, whereas those of the second and third trend east-west. These two trends coincide with the orientations of the major tectonic lineations within the basin. Age estimates from heat-flow and bathymetric data suggest the oceanic crust in the Southwest subbasin is considerably older (55 Ma) than that in the Northwest (35-36 Ma) or East (32 Ma) subbasins.

The episodic tectonic model is supported by basin subsidence analysis. Subsidence, especially subsidence rate curves derived from the regional well data, demonstrates that unlike a classic Atlantic passive margin, thermal subsidence in the South China Sea was punctuated by rapid subsidence events which are chronologically consistent with the rifting episodes.

In terms of hydrocarbon potential, the episodes of rifting and drifting would be conducive to the development of overprinted structures and the deposition of several discrete transgressive packages of source rocks and reservoirs, separated by widespread unconformities. The thermal maturity of sedimentary organic matter affected by episodic rifting and subsidence may be greater than expected on a purely passive margin of equivalent age that had not experienced repeated heating.

First Page Preview

First page PDF preview
You do not currently have access to this article.