ABSTRACT

Shale gas in the Sichuan Basin and its periphery potentially plays an important role in the world shale gas industry. An understanding of remigration and leakage from continuous shale reservoirs is very important for shale gas exploration, especially in the Sichuan Basin and its periphery. The shale gas accumulation models that relate to remigration and leakage were developed within the Wufeng and Longmaxi black shales in the Jiaoshiba and the Youyang blocks. First, a tectono-sedimentary history of the Wufeng and Longmaxi black shales in the Sichuan Basin and its periphery was developed based on the published literature. The history exhibits a continuous distribution of high-quality Wufeng and Longmaxi black shale, which is the foundation of the shale gas formation. Second, the shale gas remigration–accumulation model in the anticlines was clarified by using data collected from the shale gas fields in Jiaoshiba block. The shale gas model for the Jiaoshiba block was developed on the basis of a continuous shale reservoir distribution, differentiated structural deformation, and a gas self-sealed system. Third, the shale gas fault failure leakage model in the fault blocks and the erosion model in the residual areas were revealed based on the shale reservoir and shale gas content heterogeneity in the Youyang block. These two models were validated by available data including 13 two-dimensional seismic lines and 2 shale gas exploration vertical wells in the Youyang block. Shale gas areas with high gas resource and gas production rates in the anticlines were defined by the remigration–accumulation model. The fault failure leakage model was used to find shale gas with limited commercial potential, whereas commercial shale gas was largely lacking according to the erosion residual model. The study on remigration and leakage from continuous shale reservoirs in the Sichuan Basin and its periphery can be used to better understand and improve the exploration efforts based on resource preservation.

You do not currently have access to this article.