Petroleum mobility in shale is closely correlated with the attributes of shale petroleum and pores; however, the relationship between these attributes is poorly understood. To characterize petroleum mobility in self-sourcing reservoirs, a suite of mature Eocene shales was selected and subjected to organic solvent extraction, and both the raw and solvent-treated samples were analyzed using pyrolysis, nitrogen adsorption, and x-ray diffraction. The results show that the pore surface area and pore volume of these shales are mainly controlled by their clay and quartz content rather than their organic matter (OM) content and are limited by the presence of carbonates. Correlations of soluble OM with pore surface area and volume after solvent extraction indicate that petroleum mobility of studied shales is initiated when the petroleum content reaches 0.70 wt. % of the rock and the pore diameter is over 12.1 nm. These thresholds are established in the studied area and should be similar for the self-sourcing reservoirs from similar sedimentary environments. This work proposes a method to reveal the thresholds of petroleum content and pore diameter for petroleum mobility in self-sourcing reservoirs, which is useful in the assessment of petroleum producibility and is of significance for unconventional petroleum exploration and exploitation.

You do not currently have access to this article.