3-D Structural Interpretation: Earth, Mind, and Machine
Three-dimensional geologic interpretation of surface and subsurface data requires integration and application of both geologic knowledge and spatial cognitive skills. Much surface geologic mapping still employs pen and paper techniques, but subsurface interpretation is usually accomplished using sophisticated visualization software. In both cases, successful interpreters use mental models that bridge internal and external forms of 3-D visualization to construct 3-D geologic interpretations. This AAPG Memoir 111 sets out to understand more about the convergence of geology, 3-D thinking, and software, which collectively provide the basis for truly effective interpretation strategies. It should appeal to all geologic interpreters, and especially those who investigate and teach interpretation skills.
Structural Interpretation of Seismic Geologic Reality, Perspective, and 3-D Thinking
-
Published:January 01, 2016
Abstract
Our notion of reality in seismic interpretation and structural geology usually follows a series of careful observations and ideas that eventually crystallize into a best-case model. In most other branches of science the strength or reality of such models, or hypotheses, is increased by the number of robust tests that either refine or fail to disprove the original idea. However, geological models in the hydrocarbon exploration and production sector differ because the starting point for testing a hypothesis is usually an interpretation of seismic data or other remote measurements, rather than the direct observation of an effect.
The scientific method of prediction tested by observation is a key part of mapping three-dimensional (3-D) structures in the field and geological training. An analogous, rule-based approach also applies to the accurate creation of 3-D subsurface structural models. A defensible structural model must embody more than fault and horizon surfaces. It must also honor the rules of structural geology. Some simple rules are outlined in this chapter. These can be applied iteratively throughout the life of the seismic interpretation. Failure to honor structural rules leads to poor interpretations that may be compounded by a lack of appreciation of the importance of 3-D perspective. In this chapter, we also briefly explore the historical use and understanding of perspective.
Those in the exploration and production industry need to think carefully about how to leverage the 3-D interpretation and modeling process. Most importantly, since it is managers who control the exploration and production workflow, they above all need to be informed about the advantages of using a structurally qualified 3-D model in future projects.