Deformation, Fluid Flow, and Reservoir Appraisal in Foreland Fold and Thrust Belts
Several topics are covered including: *the use of hydrocarbon-bearing fluid inclusions and apatite fission tracks as paleothermometers for reconstructing P-T evolution of subthrust reservoirs *the use of hydrocarbon-bearing fluid inclusions and apatite fission tracks as paleothermometers for reconstructing P-T evolution of subthrust reservoirs *the coupling of kinematic and thermal modeling performed to trace the burial (P-T) evolution of potential source rocks and reservoirs in three cases studies in the southern Apennines, Colombia, and Pakistan *analytical results and integrated studies, which link deformation and fluid circulation in various fold and thrust belts, with the Sierra Madre in Mexico, the Central Brooks Range, the Arctic in Alaska, the Coastal belt in northern Spain, and the Ukraine featured. Links between deformation, fluid flow, diagenesis, and reservoir characteristics are discussed in depth and descriptions of petrographic techniques integrated with basin modeling are discussed in case studies for carbonate reservoirs in the Apennines, the Canadian Rockies, and the Polish Carpathians, and for sandstone reservoirs in Eastern Venezuela. Sixteen of the twenty-one chapters illustrate the influence of thrust-belt evolution on regional petroleum systems. The petroleum potential in the Tunisian Atlas and in Sicily, close to where the Hedberg Conference and post-conference field trip were held, is described. An older example is documented, for the Gaspé Appalachians, where multiphase Paleozoic deformation had a strong control on the burial history of potential source rocks, petroleum generation and migration, and oil charge of the traps. As the first in the brand-new Hedberg Series of publications, this volume is a comprehensive look at understanding petroleum systems in fold and thrust belts.
Dolomitization Processes and Their Relationships with the Evolution of an Orogenic Belt (Central Apennines and Peri-Adriatic Foreland, Italy)
-
Published:January 01, 2004
-
CiteCitation
M. V. Murgia, P. Ronchi, A. Ceriani, 2004. "Dolomitization Processes and Their Relationships with the Evolution of an Orogenic Belt (Central Apennines and Peri-Adriatic Foreland, Italy)", Deformation, Fluid Flow, and Reservoir Appraisal in Foreland Fold and Thrust Belts, Rudy Swennen, François Roure, James W. Granath
Download citation file:
- Share
Abstract
In the Jurassic-lower Cretaceous sequence of central Apennines and their foreland (onshore and offshore Marche-Abruzzi regions), the dolomitization processes enhanced the petrophysical properties of the carbonate platform and slope series. The area experienced a first phase of passive-margin regime, from the Lower Jurassic to the Miocene: the Liassic carbonate platform underwent extensional tectonics that established the southern Apulian-Apennines persisting platforms and the northern Umbria-Marche basin; within the basin, differential subsidence rates created faulted horsts characterized by condensed series. From upper Miocene, the area entered the collision-margin phase when its eastern part was involved in the Apennines orogeny. The aim of this study was to analyze the dolomitization process in relation with the fluid-flow changes caused by the evolution of the geological framework.
Dolomitized bodies are mainly located at the Jurassic-Early Cretaceous platform edges and in the paleohigh areas, particularly in the platform Calcare Massiccio and basinal Corniola formations, with minor extension to younger slope successions (up to Maiolica Formation). The petrographic observations evidenced a multiphase dolomitization of alternated dolomite replacement, dissolution, and recrystallization. The carbon and oxygen isotopic analyses suggest a seawater-derived diagenesis in a wide temperature range; this is confirmed by the fluid-inclusion analyses that detected a few stages of dolomitization events during a progressive heating of the carbonate series. The reconstructed paragenetic sequence is almost the same in all the studied successions, both in outcrop and subsurface.
The data collected show that the dolomitization processes changed during the evolution of the area from a passive-margin domain to the collision-margin regime. In both phases, the interaction between the increasing burial temperature and the fluid migration paths, which is driven by the approaching orogenic wave, is suggested.
The first dolomitization event (dolomite 1) is characterized by low homogenization temperature (Th) and is interpreted as a replacement of calcite precursor; its formation occurred during the passive-margin domain and is strongly dependent on the rate of subsidence of the different areas. The dolomite 1 time of generation varies from Cretaceous, in the highly subsiding areas of the thrust zone, to the Miocene in the paleohighs of the foreland. Dolomite overgrowths (dolomite 2) precipitated at higher temperatures. In the depocenters of thrust zone, those temperatures (as much as 130°C) were reached during maximum overburden during the upper Miocene, whereas in the foredeep and foreland areas, the high-temperature dolomitizing fluids seem to flow through faults during the orogenic phases (Pliocene). In the whole studied area, pore-filling dolomite cements (dolomite 4 and saddle dolomite) are supposed to be precipitated from heated fluids coming from deep strata along fault planes. Regional considerations and salinity data of the fluid inclusions support the hypothesis that the dolomitizing fluids of the last phases could come from Triassic evaporites that are present in the area and represent the detachment surface of the thrusts.
- Abruzzi Italy
- Adriatic region
- Apennines
- carbonate platforms
- carbonate rocks
- carbonatization
- Central Apennines
- Cretaceous
- dolomitization
- dolostone
- Europe
- fluid inclusions
- formation evaluation
- inclusions
- Italy
- Jurassic
- Lower Cretaceous
- Marches Italy
- Mesozoic
- natural gas
- naturally fractured reservoirs
- orogenic belts
- permeability
- petroleum
- petroleum exploration
- porosity
- reservoir rocks
- sedimentary rocks
- Southern Europe
- structural traps
- tectonics
- traps
- Peri-Adriatic Foreland