Deformation, Fluid Flow, and Reservoir Appraisal in Foreland Fold and Thrust Belts

Several topics are covered including: *the use of hydrocarbon-bearing fluid inclusions and apatite fission tracks as paleothermometers for reconstructing P-T evolution of subthrust reservoirs *the use of hydrocarbon-bearing fluid inclusions and apatite fission tracks as paleothermometers for reconstructing P-T evolution of subthrust reservoirs *the coupling of kinematic and thermal modeling performed to trace the burial (P-T) evolution of potential source rocks and reservoirs in three cases studies in the southern Apennines, Colombia, and Pakistan *analytical results and integrated studies, which link deformation and fluid circulation in various fold and thrust belts, with the Sierra Madre in Mexico, the Central Brooks Range, the Arctic in Alaska, the Coastal belt in northern Spain, and the Ukraine featured. Links between deformation, fluid flow, diagenesis, and reservoir characteristics are discussed in depth and descriptions of petrographic techniques integrated with basin modeling are discussed in case studies for carbonate reservoirs in the Apennines, the Canadian Rockies, and the Polish Carpathians, and for sandstone reservoirs in Eastern Venezuela. Sixteen of the twenty-one chapters illustrate the influence of thrust-belt evolution on regional petroleum systems. The petroleum potential in the Tunisian Atlas and in Sicily, close to where the Hedberg Conference and post-conference field trip were held, is described. An older example is documented, for the Gaspé Appalachians, where multiphase Paleozoic deformation had a strong control on the burial history of potential source rocks, petroleum generation and migration, and oil charge of the traps. As the first in the brand-new Hedberg Series of publications, this volume is a comprehensive look at understanding petroleum systems in fold and thrust belts.
Predicting Hydrocarbon Generation and Expulsion in the Southern Apennines Thrust Belt by 2-D Integrated Structural and Geochemical Modeling: Part II— Geochemical Modeling Available to Purchase
-
Published:January 01, 2004
-
CiteCitation
Fausto Mosca, Simone Sciamanna, William Sassi, Jean-Luc Rudkiewicz, Roberto Gambini, 2004. "Predicting Hydrocarbon Generation and Expulsion in the Southern Apennines Thrust Belt by 2-D Integrated Structural and Geochemical Modeling: Part II— Geochemical Modeling", Deformation, Fluid Flow, and Reservoir Appraisal in Foreland Fold and Thrust Belts, Rudy Swennen, François Roure, James W. Granath
Download citation file:
- Share
Abstract
The structural deformation and the source rock system evolution of the southern Apennines thrust belt (SATB) are studied along a regional structural profile traversing the Monte Alpi–Tempa Rossa oil fields. In part I (the accompanying chapter), the reconstruction of the structural evolution and the thermal history was addressed to calibrate the burial history of the source rocks along the cross section. Here in part II, the generation and expulsion of hydrocarbons were modeled to test a potential source rock interval and identify geometric factors explaining the observed differences in the nature of the oil found in the three major structural trends. Organic-rich, laminated limestones that were penetrated by a few wells in the region represent the best source rock candidate to date. The source interval shows total organic carbon (TOC) values as much as 4% and hydrogen index as much as 632 mg HC/g TOC. This source rock also contains high amounts of sulfur (3–6% in kerogen).
Rock samples and asphaltenes isolated from the oil were analyzed to determine both primary bulk kerogen decomposition and compositional kerogen decomposition products. For the latter, the results include determination of the kinetics of dry gas (C1), wet gas (C2–C5), light oil (C5–C14), and heavy oil (C15+) components. The southern Apennines Cretaceous source rock behaves as a type I kerogen equivalent, consistent with the distribution of the activation energies dominated by a single activation energy. Most of the predicted generated and expelled hydrocarbons are heavy and light oils. Thermal conditions for secondary cracking of the generated oil into gas could have been reached only in the footwall of the major thrusts. The measured kinetic parameters allow the modeling of a favorable timing of trap formation with respect to hydrocarbon generation and expulsion. When the measured bulk and compositional kinetics are used in the modeling, no oil generation is reached in the Tempa Rossa trend. The model shows that the Tempa Rossa heavy-oil field has been filled by oil that was generated deeper in the surrounding of the structure. Compositional kinetic simulation is consistent with the results of the geochemical analyses performed on several oils from the region. The original oils in the reservoirs should have an API gravity of about 25° API. Only subsequent geological processes (uplift and erosion) provide the pressure-volume-temperature variation responsible for the compositional grading column at the present time.
Finally, kerogen transformation ratio vs. depth shows that the three different transformation ratio-depth zones should be considered to fit the thermal history of the southern Apennines. This two-dimensional information can be used to predict the distribution of potential source rock kitchen areas in the surroundings of the modeled section to guide future exploration.
- Apennines
- asphalt
- bitumens
- Europe
- fold and thrust belts
- geochemical methods
- geochemical surveys
- Italy
- natural gas
- organic compounds
- petroleum
- petroleum exploration
- physicochemical properties
- reservoir properties
- source rocks
- Southern Apennines
- Southern Europe
- structural traps
- surveys
- total organic carbon
- traps
- two-dimensional models
- Monte Alpi Field
- Tempa Roossa Field