ABSTRACT
During most of the pre-Carboniferous, Algeria was part of a stable foreland platform on which a thick clastic sequence was deposited. Caledonian tectonics were primarily epeirogenic, but they established structural alignments that were further reinforced by the much stronger movements of the Carboniferous Hercynian orogeny.
In northern and eastern Algeria, a variable basal sandstone and a thick sequence of Triassic and Lower Jurassic evaporites were deposited over the eroded Hercynian surface. This provided a seal for subsequent hydrocarbon migration from the underlying Silurian and Devonian source rocks. Important epeirogenic events and tensional faulting occurred during the Jurassic and Cretaceous.
Compressional forces in the Tertiary culminated in the Alpine orogeny. A broad zone of uplift and southward-directed imbricate thrusting formed along the northern margins of Algeria obscuring much of the sub-Tertiary depositional and structural features.
Hydrocarbon accumulation in Algeria has been predominantly controlled by the relationships among the Silurian-Devonian source rocks, the Hercynian unconformity, and the distribution of the overlying Triassic clastic and evaporite sequence. More than 65% of the recoverable oil reserves and 90% of the gas reserves are trapped immediately below or above the Hercynian unconformity, with the evaporites providing the seal.
Heretofore, the complex geology of the Tertiary overthrust zone has been a deterrent to exploration in both the autochthonous Miocene basins and the sub-Tertiary sequence. However, improved seismic techniques and renewed interest in the potential of overthrust provinces point to increased activity in this area.