We use two- and three-dimensional seismic data to describe the structural geology of the lateral margin of a deep-water delta lobe within the Niger Delta that has undergone basinward, gravitationally driven translation. We term this region the “lateral strike-slip domain.” Deformation is characterized by a strike-slip fault system that can be followed for a distance of approximately 75 km (∼47 mi) from the shelf to the slope and toe of slope. On the northwestern side of the fault system, a fold and thrust belt that propagated north to northwest has developed within a large-scale restraining area of 460 km2 (180 mi2). On the southeastern side of the strike-slip fault system, widespread extension has occurred, characterized by several graben and kilometer-scale rollover structures. Lateral margins of gravitational collapses give key information on how they deformed. We estimate a minimum horizontal displacement on the main strike-slip fault of approximately 7 km (∼4 mi). Structural and kinematic evidence, such as present-day propagating strike-slip faults, for possible future lateral expansions of the lateral strike-slip domain, is described. We expect to observe similar sets of deformation styles at the margins of other preserved gravitational collapse sliding over a detachment whose efficiency in causing downdip slip may vary laterally.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.