Oligocene–Miocene deep-water deposits of the Puchkirchen and basal Hall formations contain the main gas reservoirs of the Austrian Molasse Basin. A new seismostratigraphic model, based on a 2000-km2 (772-mi2), regional, three-dimensional (3-D) seismic data set, has fundamentally changed our understanding of the depositional processes and reservoir distribution in this classic deep-water foreland basin.

Regional 3-D seismic attribute maps, calibrated by nearly 350 wells, reveal that sedimentation occurred primarily within the confines of a large (3–5 km [1.8–3.1 mi] wide by >100 km [>62 mi] long), low-sinuosity channel belt that occupied the Molasse Basin foredeep. The channel fill consists predominantly of turbiditic conglomerate and sandstone, as well as chaotic slump and debris-flow deposits. Overbank areas are characterized by fine-grained turbiditic sandstone and mudstone. Incised canyons and ponded slope fans were active along the southern basin margin; lateral tributary channels intersected the axial channel belt in the north. Significant accumulations of gas are stratigraphically and structurally trapped in channel thalweg and slope-fan sandstones, with more modest amounts in overbank lobe and tributary-channel deposits.

Basin geometry had a profound effect on the architecture of the channel belt and subsequent sediment distribution. Large-scale deep-water channel systems are poorly documented from foreland basins; the depositional model developed for the Puchkirchen Formation was made possible through the use of high-quality seismic data and an extensive drill-core database. The depositional model may be a useful analog for other elongate, deep-water basins, especially those that lack extensive, modern data sets.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.